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Introduction

The theory of Riemann surfaces was founded in classical works by B.
Riemann and A. Hurwitz. We note that originally Riemann surface was
defined as a branched covering over the sphere. Over the last decade,
a few discrete versions of the theory of Riemann surfaces were created.

1 Bacher, R., de la Harpe, P., and Nagnibeda,T., 1997
2 Urakawa, H., 2000
3 Baker, M., Norine, S., 2009
4 Caporaso, L., 2011

In these theories, the role of Riemann surfaces is played by graphs. As well
as branched coverings are replaces by quasi-coverings of graphs.
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Introduction

Dictionary

1 Riemann surface ⇐⇒ Finite connected multigraph
2 Holomorphic map ⇐⇒ Harmonic map

(branched covering) (quasi-covering)
3 The sphere ⇐⇒ Tree
4 Torus (= one "hole" surface) ⇐⇒ Flower (= one cycle graph)
5 Genus (] of "holes") ⇐⇒ Genus (] of independent loops)
6 Conformal automorphism ⇐⇒ Automorphism acting harmonically

(= acting free on arcs)
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Harmonic maps and branched coverings

One of the first definitions of branched covering for graphs was done by T.
D. Parsons, T. Pisanski and B. Jackson (1980). The main idea was to find
a discrete version of branched covering for graph through dual voltage
assignment.

Following Baker-Norine (2007) we prefer to give the following geometric
definition.

For any vertex x of a graph G we denote by Stx the star of G at x .

Definition
A morphism ϕ : G → G ′ is called to be branched covering (also
quasi-covering, harmonic map and so on in the literature ) if for all vertices
x ∈ V (G ), the quantity |ϕ−1(e ′) ∩ Stx | is independent of the choice of
edge e ′ ∈ E (Stϕ(x)).
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Riemann-Hurwitz formula for graphs

Recall the classical Riemann-Hurwitz formula. Given surjective holomorphic
map ϕ : S → S ′ between Riemann surfaces of g and g ′, respectively, one
has

2g − 2 = deg(ϕ)(2g ′ − 2) +
∑
x∈S

(rϕ(x)− 1), (1)

where rϕ(x) denotes the ramification index of ϕ at x . Let G be a finite
group of conformal automorphisms acting on S and ϕ : S → S ′ = S/G is
the canonical map induced by the group action. Then the above formula
can be rewritten in the form

2g − 2 = |G |(2g ′ − 2) +
∑
x∈S

(|G x | − 1), (2)

where G x stands for the stabiliser of x in G and |G x | = rϕ(x) is the order
of a stabiliser.
Remark that S has only finite number of points with non-trivial stabiliser.
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Riemann-Hurwitz formula for graphs

The latter formula has a natural discrete analogue. By a graph we mean a
finite connected multigraph without loops. We define genus of graph X as
g = |E (G )| − |V (G )|+ 1, that is as cyclomatic number of G . Let G be a
finite group acting on graph X without fixed and invertible edges. Denote
by g ′ genus of the factor graph X ′ = X/G . Then by [Baker-Norine, 2009]
we have

g − 1 = |G |(g ′ − 1) +
∑

x∈V (X )

(|G x | − 1), (3)

where V (X ) is the set of vertices of X .
We extend the above mentioned results to group actions with fixed and
invertible edges.
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Finite group action on graphs

We say that a group G acts on X if G is a subgroup of Aut(X ). Let X be
a finite connected graph. We note the genus g(X ) = |E (X )| − |V (X )|+ 1
coincides with the Betti number of X that is the rank of the first homology
group H1(X ,Z).

Let G be a finite group acting on the graph X . An edge {x , x̄} ∈ E (X )
consisting of two semi-edges x and x̄ is said to be invertible (or reversible)
by G if there is an element g ∈ G such that g sends x to x̄ and x̄ to x .

An edge {x , x̄} ∈ E (X ) is said to be fixed by G if there is a non-trivial
element g ∈ G that fixes x and x̄ . We say that G acts on X without edge
reversing if X has no edges invertible by G . Also, G acts on X without
fixed edges if X has no edges fixed by G .
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Groups acting on a graph without edge reversing

Our first result is the following theorem for groups acting on a graph
without edge reversing.

Theorem 1 (M., 2013)

Let X be a graph of genus g and G is a finite group acting on X without
edge reversing. Denote by g(X/G ) genus of the factor graph X/G . Then

g − 1 = |G |(g(X/G )− 1) +
∑

v∈V (X )

(|G v | − 1)−
∑

e∈E(X )

(|G e | − 1),

where V (X ) is the set of vertices, E (X ) is the set of edges of X , G x

stands for the stabiliser of x ∈ V (X ) ∪ E (X ) in G and |G x | is the order of
a stabiliser.
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Groups acting on a graph with edge reversing

Let now G be a finite group acting on a graph X , possibly with invertible
edges. In this case, there are three different ways to define the factor graph
X/G .

1◦. The factor graph with loops (X/G )loop.

2◦. The factor graph with semi-edges (X/G )tail

3◦. The factor graph without semi-edges (X/G )free .

Alexander Mednykh (NSU) 9 / 29



Groups acting on a graph with edge reversing
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Groups acting on a graph with edge reversing

We have the following two theorems.

Theorem 2 (M., 2013)

Let X be a graph of genus g and G is a finite group acting on X , possibly
with edge reversing. Denote by g(X/G )loop genus of the factor graph
(X/G )loop. Then

g − 1 = |G |(g(X/G )loop − 1) +
∑

v∈V (X )

(|G v | − 1)−
∑

e∈E(X )

(|G e | − 1),

where V (X ) is the set of vertices, E (X ) is the set of edges of X , G x

stands for the stabiliser of x ∈ V (X ) ∪ E (X ) in G and |G x | is the order of
a stabiliser.
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Groups acting on a graph with edge reversing

Theorem 3 (M., 2013)

Let X be a graph of genus g and G is a finite group acting on X , possibly
with edge reversing. Denote by γ = g(X/G )tail genus of the factor graph
(X/G )tail . Then

g − 1 = |G |(γ − 1) +
∑

v∈V (X )

(|G v | − 1)−
∑

e∈E(X )

(|G e | − 1) +
∑

e∈E inv (X )

|G e |,

where V (X ) is the set of vertices, E (X ) is the set of edges of X , G x is the
stabiliser of x ∈ V (X ) ∪ E (X ) in G , and E inv (X ) is the set of invertibile
edges of X .

Alexander Mednykh (NSU) 12 / 29



Harmonic group action on graphs

Let X be a finite connected multigraph without loops.

Definition
A group G < Aut(X ) acts harmonically on a graph X if and only if it acts
freely on the set of arcs of X .

We have the following observation.

Observation
If group G acts harmonically on a graph X then the canonical projection
X → X/G is a branched covering.
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Harmonic group action on graphs

Let finite group G acts harmonically on a graph X . Then |G e | = 1 for each
e ∈ E (X ). We have the following corollary from Theorem 3 (compare with
Baker-Norine, 2009 and Corry, 2011).

Corollary

Let X be a graph of genus g and G is a finite group acting on X
harmonically, possibly with edge reversing. Denote by g(X/G )free genus of
the factor graph (X/G )free . Then

g − 1 = |G |(g(X/G )free − 1) +
∑

v∈V (X )

(|G v | − 1) + |E inv (X )|,

where V (X ) is the set of vertices, E (X ) is the set of edges of X , G v is the
stabiliser of v ∈ V (X ) in G , and E inv (X ) is the set of invertible edges of X .
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Harmonic group action on graphs

Recall some classical results for Riemann surface theory. For each g ≥ 2
define

N(g) := max{|Aut(Sg )| : Sg is a compact Riemann surface of genus g}.

Then
8(g + 1) ≤ N(g) ≤ 84(g − 1),

and these bounds are sharp in the sense that both the upper and lower
bound are attained for infinitely many values of g . The upper bound was
found by Hurwitz (1893). The lower bound was independently obtained by
R. Accola (1968) and C. Maclachlan (1969).
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Harmonic group action on graphs

Denote by N(g) maximum size of a finite group acting harmonically on a
graph of genus g ≥ 2.

Theorem (Scott Corry, 2011)
For g ≥ 2 we have

4(g − 1) ≤ N(g) ≤ 6(g − 1).

The upper and lower bound are attained for infinitely many values of g .

Recent paper by Scott Corry (2013) states that maximal graph groups G
with |G | = 6(g − 1) are exactly the finite quotients of the modular group
Γ =< x , y |x2 = y3 = 1 > of size at least 6.
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Wiman’s theorem

Klein’s quartic curve, x3y + y3z + z3x = 0, admits the group PSL2(7) as
its full group of conformal automorphisms. It is a genus three curve which
has exactly 168 = 84(3− 1) automorphisms. This is the curve of smallest
genus realising the upper bound 84(g − 1) on the order of a group of
conformal automorphisms of a curve of genus g > 1, given by A. Hurwitz
in 1893. Around the same time, A. Wiman (1895) characterised the curves
w2 = z2g+1− 1 and w2 = z(z2g − 1), g > 1, as the unique curves of genus
g admitting cyclic automorphism groups of the largest and the second
largest possible order (4g + 2 and 4g , respectively). The modern proof of
these and similar results is contained in the paper by K. Nakagawa (1984).
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Wiman’s theorem

We obtain the following discrete version of the Wiman theorem.

Theorem 4 (A. Mednykh and I. Mednykh, 2013)

Let X be a graph of genus g ≥ 2 and ZN is a cyclic group acting
harmonically on X . Then N ≤ 2g + 2. The upper bound N = 2g + 2 is
attained for any even g . In this case, the signature of orbifold X/ZN is
(0; 2, g + 1), that is, X/ZN is a tree with two branch points of order 2 and
g + 1, respectively.
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Wiman’s theorem
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Wiman’s theorem
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Wiman’s theorem

The second and the third largest cyclic groups are given by

Theorem 5 (A. Mednykh and I. Mednykh, 2013)

Let X be a graph of genus g ≥ 2 and ZN is a cyclic group acting
harmonically on X . Let N < 2g + 2 then N ≤ 2g . The upper bound
N = 2g is attained only in the following cases:
(i) N = 2g and X/ZN is an orbifold of the signature (0; 2, 2g), g ≥ 2;

(ii) N = 12 and X/ZN is an orbifold of the signature (0; 3, 4), g = 6.

Moreover, the upper bound N = 2g − 1 is attained only in two cases:
(iii) N = 3 and X/ZN is an orbifold of the signature (0; 3, 3), g = 2;

(iv) N = 15 and X/ZN is an orbifold of the signature (0; 3, 5), g = 8.
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Hyperelliptic graphs

A graph X is said to be hyperelliptic, if it has a two-fold harmonic map on
a tree. The corresponding covering transformation is called
hyperelliptic involution. It is unique if the genus of graph X is grater then
one. We note that any graph of genus two without loops and bridges is
hyperellptic (Baker-Norine, 2007).

Fig. 2: Hyperelliptic graph of genus 2
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Hyperelliptic graphs

A graph is said to be γ−hyperelliptic if it is a two fold branched covering of
a genus γ graph. The corresponding covering involution is called
γ−hyperelliptic.
The aim of the next theorem is to provide two criteria for involution τ
acting on a graph X of genus g to be γ−hyperelliptic.
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Hyperelliptic graphs

Theorem
Let X be a finite connected graph of genus g . Consider an involution τ
acting free on the set of directed edges of X . Denote by τ∗ the induced
action of τ on the first homology group H1(X ). Suppose that τ has a least
one fixed vertex on X . Then the following conditions are equivalent:
(i) The genus of factor graph X/〈τ〉 is equal to γ.
(ii) There is a basis a1, a2, . . . , ag in the homology group H1(X ) whose

g − 2γ elements are invertible and the others 2γ split into γ
interchangeable pairs under the action of τ∗.

(iii) trH1(X ) (τ∗) = 2γ − g .

If τ acts fixed point free on X then genera g and γ are related by the
Schreier formula g − 1 = 2(γ − 1).
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Oikawa theorem

In 1956 Kotaro Oikawa proved the following theorem.

Theorem (Oikawa, 1956)

Let Sg be a closed Riemann surface of genus g and A is a finite subset of
Sg consisting of |A| ≥ 1 elements. Suppose that 2g − 2 + |A| > 0 and G is
a group of conformal automorphisms of Sg leaving the set A invariant.
Then

|G | ≤ 12(g − 1) + 6|A|.

In the next section we find a discrete version of the Oikawa’s. Again, the
key point of the proof is the Riemann-Hurwitz relation.
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Oikawa’s theorem for graphs

Our result for graphs is the following theorem.

Theorem 6 (R. Nedela, A. Mednykh, 2013)

Let X be a graph of genus g and A is a subset of vertices of X consisting
of |A| ≥ 1 elements. Suppose that g − 1 + |A| > 0 and G is a finite group
acting on X harmonically and leaving the set A invariant. Then

|G | ≤ 2(g − 1) + 2|A|.

The upper bound is sharp and is attained for arbitrary large values of g and
|A|. So, at least infinitely many often.
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Two Arakawa’s theorems

Now our aim is to find discrete versions of two Arakawa’s theorems (2000).

The first one states that if G be a finite group of automorphisms of a
compact Riemann surface X of genus g ≥ 2 and A and B are two disjoint
G -invariant subsets of X of the orders |A| ≥ |B| ≥ 1 then
|G | ≤ 8(g − 1) + |A|+ 4|B|.

The second theorem asserts that if A,B and C are three disjoint the
G -invariant subsets of X with |A| ≥ |B| ≥ |C | ≥ 1 then
|G | ≤ 2(g − 1) + |A|+ |B|+ |C |.
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Two Arakawa’s theorems

We present a discrete version of the first Arakawa’s theorem by the
following theorem.

Theorem 7 (R. Nedela, A. Mednykh and I. Mednykh 2013)

Let X be a graph of genus g ≥ 2 and A and B are two disjoint subsets of
vertices of X of the orders |A| ≥ |B| ≥ 1. Suppose that G is a finite group
acting harmonically on X and leaving the sets A and B invariant. Then

|G | ≤ 3(g − 1) + |A|+ 3|B|
2

.

Again, the upper bound is sharp and is attained for arbitrary large values of
g , |A|, |B| and |C |.
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Two Arakawa’s theorems

A discrete version of the second Arakawa’s theorem is given by the
following theorem.

Theorem 8 (R. Nedela, A. Mednykh and I. Mednykh, 2013)

Let X be a graph of genus g ≥ 2 and A,B and C are three disjoint subsets
of vertices of X of the orders |A| ≥ |B| ≥ |C | ≥ 1. Suppose that G is a
finite group acting harmonically on X and leaving the sets A,B and C
invariant. Then

|G | ≤ g − 1 + |A|+ |B|+ |C |
2

.

As in the two previous theorems, the upper bound is sharp and is attained
for arbitrary large values of g , |A|, |B| and |C |.
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